Fast Multilevel Evaluation of Smooth Radial Basis Function Expansions
نویسندگان
چکیده
Abstract. Radial basis functions (RBFs) are a powerful tool for interpolating/approximating multidimensional scattered data. Notwithstanding, RBFs pose computational challenges, such as the efficient evaluation of an n-center RBF expansion at m points. A direct summation requires O(nm) operations. We present a new multilevel method whose cost is only O((n + m) ln(1/δ)), where δ is the desired accuracy and d is the dimension. The method applies to smooth radial kernels, e.g., Gaussian, multiquadric, or inverse multiquadric. We present numerical results, discuss generalizations, and compare our method to other fast RBF evaluation methods. This multilevel summation algorithm can be also applied beyond RBFs, to discrete integral transform evaluation, Gaussian filtering and de-blurring of images, and particle force summation.
منابع مشابه
Fast Multilevel Evaluation of 1-D Piecewise Smooth Radial Basis Function Expansions
Radial basis functions (RBFs) are a powerful tool for interpolating/approximating multidimensional scattered data in R. However, a direct evaluation of an n-center RBF expansion at m points requires O(nm) operations, which is prohibitively expensive as n,m increase. We present a new multilevel method for uniformly dense centers and points and d = 1, whose cost is only O(C(n + m)), where C depen...
متن کاملFast Evaluation of Radial Basis Functions: Methods for Generalized Multiquadrics in Rn
A generalised multiquadric radial basis function is a function of the form s(x) = ∑N i=1 diφ(|x − ti|), where φ(r) = ( r2 + τ2 )k/2 , x ∈ Rn, and k ∈ Z is odd. The direct evaluation of an N centre generalised multiquadric radial basis function at m points requires O(mN) flops, which is prohibitive when m and N are large. Similar considerations apparently rule out fitting an interpolating N cent...
متن کاملFast Voltage and Power Flow Contingency Ranking Using Enhanced Radial Basis Function Neural Network
Deregulation of power system in recent years has changed static security assessment to the major concerns for which fast and accurate evaluation methodology is needed. Contingencies related to voltage violations and power line overloading have been responsible for power system collapse. This paper presents an enhanced radial basis function neural network (RBFNN) approach for on-line ranking of ...
متن کاملStable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملFast Evaluation of Radial Basis Functions: Moment-Based Methods
This paper presents a new method for the fast evaluation of univariate radial basis functions of the form s(x) = ∑N n=1 dnφ(|x− xn|) to within accuracy . The method can be viewed as a generalization of the fast multipole method in which calculations with far field expansions are replaced by calculations involving moments of the data. The method has the advantage of being adaptive to changes in ...
متن کامل